
Wrapper Services
Descriptor calculation, feature selection, data filtering (including data transformation), model

training and prediction are few of the routines involved in a QSAR session. The connection between
these services can either be left up to the client or can be wrapped in a super-service.

 A generic way has to be established to access the parameters of the individual services that compose
the overall service. This can be more or less accomplished as shown in Figure 1. If the involved service
S with URI U accepts the parameter x, then this should be accessible from the layer of the super-service
using the name U:x where U should be URL-Encoded (for example the client will assign parameters
like http%3A%2F%2Fopentox.ntua.gr%3A3000%2Falgorithm%2Fsvm:kernel=RBF). Of course, for
the sake of convenience, aliases can be adopted by the wrapper service that delegate these lengthy
parameter names.
 The client can apply an OPTIONS request on the super-service or any of the underlying services and
have access to the supported parameters.

Custom Feature Calculation
 A descriptor calculation algorithm is not the only process that generates descriptor values! Data
transformation or other kind of preprocessing steps might also be necessary prior to the use of a model.
In Figure 2 we see a possible layout for a QSAR session including descriptor calculation, feature
elimination, some filtering steps such as normalization and scaling and finally data transformation. The
final dataset is used for the training of a model which defines (though its RDF representation) a set of
independent features. These are actually the features one needs to provide to that model through the
input dataset to obtain predictions. The ot:hasSource property in that particular case proves to be
inadequate since clinging to it complicates things.

Figure 1: Generic Parametrizable Super-Service

Figure 2: Complete QSAR session

For that purpose a new entity has to be introduced, namely ot:FeatureCalculationRoutine, defining for
each feature the exact procedure (in terms of successive WS invocations) one should follow to calculate
these descriptors for each one of the independent features.
 For it to be more comprehensible, let us assume that the initial dataset in Figure 2 employs the
features {f_i} i=1,2,...,K and the descriptor calculation algorithm outputs a dataset with features {f_i}
i=1,...,K,K+1,...,N1. The feature elimination filtering algorithm selects the features {f_i_j}
j=1,2,...,M<N. The normalization filter creates the features {g_j} j=1,2,...,M and then the scaling
algorithm gives the set of features {h_j} j=1,2,...,M. Finally the data transformation algorithm creates
the features {Q_l} l=1,2,...,P<M which are the independent features of the trained model. The set of
features Q_l now has to define unambiguously a way to calculate its values. In a human readable way
this is explained by the following sequence of actions:

Input. C::Compound or D_0::Dataset and M_0::Model
Expected Output. D::Dataset (with features {Q_l} l=1,2,...,P)
Step 1. Calculate the features {f_i_j} j=1,2,...,M for the compound C or the dataset D_0. Each one of
the features f_i_j links to a descriptor calculation algorithm using the ot:hasSource property. This step
outputs the auxiliary dataset D_1.
Step 2. Normalize the data in D_1 according to the normalization model that was produced by the
super-service. This step outputs the auxiliary dataset D_2. The URI of this model should be found in
the representation of the produced (super)-model.
Step 3. Scale the data in D_2 according to the normalization model that was produced by the super-
service. The auxiliary dataset D_3 is produced.
Step 4. Transform the data in D_3 using the PCA model.
Step 5. Append all other features that are needed by the model (are independent features) but were not
calculated following this procedure.
Output. Dataset D.

This can be represented in a structured machine-readable way using Feature Calculation Routines.

1 This means that the initial dataset might have descriptors already calculated. If final model includes features without a
source (defined through the hasSource property) pointing to a descriptor calculation algorithm then the client is expected
to provide these values to the model (if missing from the database). This is the case for example with experimental
descriptors.

Figure 3: Feature Calculation Routine

This way the whole procedure is much more transparent than black-box models that take up the
descriptor calculations or any other kind of wrapper services.

