
Wrapper Services
Descriptor calculation, feature selection, data filtering (including data transformation), model 

training and prediction are few of the routines involved in a QSAR session. The connection between 
these services can either be left up to the client or can be wrapped in a super-service. 

  A generic way has to be established to access the parameters of the individual services that compose 
the overall service. This can be more or less accomplished as shown in Figure 1. If the involved service 
S with URI U accepts the parameter x, then this should be accessible from the layer of the super-service 
using the name U:x where U should be URL-Encoded (for example the client will assign parameters 
like  http%3A%2F%2Fopentox.ntua.gr%3A3000%2Falgorithm%2Fsvm:kernel=RBF).  Of  course,  for 
the sake of convenience, aliases can be adopted by the wrapper service that delegate these lengthy 
parameter names. 
  The client can apply an OPTIONS request on the super-service or any of the underlying services and 
have access to the supported parameters.

Custom Feature Calculation
   A descriptor calculation algorithm is not the only process that  generates descriptor values! Data 
transformation or other kind of preprocessing steps might also be necessary prior to the use of a model. 
In Figure 2 we see a possible layout  for a QSAR session including descriptor  calculation,  feature 
elimination, some filtering steps such as normalization and scaling and finally data transformation. The 
final dataset is used for the training of a model which defines (though its RDF representation) a set of 
independent features. These are actually the features one needs to provide to that model through the 
input  dataset  to  obtain  predictions.  The  ot:hasSource property in  that  particular  case  proves  to  be 
inadequate since clinging to it complicates things. 

Figure 1: Generic Parametrizable Super-Service

Figure 2: Complete QSAR session



For that purpose a new entity has to be introduced, namely ot:FeatureCalculationRoutine, defining for 
each feature the exact procedure (in terms of successive WS invocations) one should follow to calculate 
these descriptors for each one of the independent features. 
   For it  to be more comprehensible, let us assume that the initial dataset in Figure 2 employs the 
features  {f_i} i=1,2,...,K and the descriptor calculation algorithm outputs a dataset with features  {f_i} 
i=1,...,K,K+1,...,N1.  The  feature  elimination  filtering  algorithm  selects  the  features  {f_i_j}  
j=1,2,...,M<N.  The  normalization  filter  creates  the  features  {g_j}  j=1,2,...,M and  then  the  scaling 
algorithm gives the set of features {h_j} j=1,2,...,M. Finally the data transformation algorithm creates 
the features  {Q_l} l=1,2,...,P<M which are the independent features of the trained model. The set of 
features Q_l now has to define unambiguously a way to calculate its values. In a human readable way 
this is explained by the following sequence of actions:

Input. C::Compound or D_0::Dataset and M_0::Model
Expected Output. D::Dataset (with features {Q_l} l=1,2,...,P )
Step 1. Calculate the features {f_i_j} j=1,2,...,M for the compound C or the dataset D_0. Each one of 
the features f_i_j links to a descriptor calculation algorithm using the ot:hasSource property. This step 
outputs the auxiliary dataset D_1.
Step 2.  Normalize the data in  D_1 according to the normalization  model that was produced by the 
super-service. This step outputs the auxiliary dataset D_2.  The URI of this model should be found in 
the representation of the produced (super)-model.
Step 3.  Scale the data in D_2 according to the normalization model that was produced by the super-
service. The auxiliary dataset D_3 is produced.
Step 4.  Transform the data in D_3 using the PCA model. 
Step 5. Append all other features that are needed by the model (are independent features) but were not 
calculated following this procedure.
Output. Dataset D.

This can be represented in a structured machine-readable way using Feature Calculation Routines. 

1 This means that the initial dataset might have descriptors already calculated. If final model includes features without a 
source (defined through the hasSource property) pointing to a descriptor calculation algorithm then the client is expected 
to provide these values to the model (if missing from the database). This is the case for example with experimental 
descriptors.

Figure 3: Feature Calculation Routine



This  way the  whole  procedure  is  much  more  transparent  than  black-box models  that  take  up  the 
descriptor calculations or any other kind of wrapper services. 


