$$
R^{2} \geq 0
$$

Pantelis Sopasakis
July 13, 2011

Notes

The total sum of squares, the explained sum of squares and the residual sum of squares are defined respectively as follows:

$$
\begin{align*}
S S_{\text {tot }} & \triangleq \sum_{i \in \mathbb{I}}\left(y_{i}-\bar{y}\right)^{2} \tag{1}\\
S S_{\text {reg }} & \triangleq \sum_{i \in \mathbb{I}}\left(f_{i}-\bar{y}\right)^{2} \tag{2}\\
S S_{\text {err }} & \triangleq \sum_{i \in \mathbb{I}}\left(f_{i}-y_{i}\right)^{2} \tag{3}
\end{align*}
$$

It follows from the triangle inequality that:

$$
\begin{equation*}
S S_{t o t} \leq S S_{r e g}+S S_{e r r} \tag{4}
\end{equation*}
$$

Now R squared is defined as follows:

$$
\begin{equation*}
R^{2} \triangleq 1-\frac{S S_{e r r}}{S S_{t o t}}=\frac{S S_{t o t}-S S_{e r r}}{S S_{t o t}} \tag{5}
\end{equation*}
$$

So by means of (4), one has that:

$$
\begin{equation*}
R^{2} \geq \frac{S S_{t o t}-\left(S S_{t o t}-S S_{r e g}\right)}{S S_{t o t}}=\frac{S S_{r e g}}{S S_{t o t}} \geq 0 \tag{6}
\end{equation*}
$$

